Two-dimensional simulation by regularization of free surface viscoplastic flows with Drucker-Prager yield stress, application to granular collapse

Christelle Lusso
CERMICS/IPGP/LMD
lussoc@lmd.ens.fr

31 mars 2015

Plan

- Introduction
- 2 Drucker-Prager model
- 3 1D/2D comparison
- Simulation of granular collapse
- 6 Conclusions

- Geophysical flows modeling : avalanches, landslides, pyroclastic flows.
- Study of the fluid/solid transition in a two-phase fluid.
- Dynamics with motionless part at the bottom and mobile on the surface.

Main difficulties:

- Rheology: plasticity and viscosity,
 - yield stress, transition.
- Free surface.

Yield stress fluid

Features:

- Existence of a flow threshold.
- Below the yield limit, the stress cannot cause the flow.

Simultaneous existence : mobile static part & mobile part. static

Viscoplastic rheology

- \bullet \vec{U} velocity, p pressure.
- Stress tensor : $P = \sigma p \mathrm{Id}$, $\mathrm{tr} \sigma = 0$.

Viscoplastic law ⇒ yield criterion

Bingham law:

$$\begin{split} \sigma &= 2\eta D\vec{U} + {\color{red}\sigma_c} \frac{D\vec{U}}{||D\vec{U}||} & \text{if } D\vec{U} \neq 0, \\ \|\sigma\| &\leq {\color{red}\sigma_c}, \; \sigma \; \text{symmetric} & \text{if } D\vec{U} = 0, \end{split}$$

with $D\vec{U}$ the strain tensor and η the viscosity.

• Drucker-Prager law :

$$\sigma = 2\eta D\vec{U} + \kappa(p) \frac{D\vec{U}}{||D\vec{U}||}$$
 if $D\vec{U} \neq 0$, $||\sigma|| \leq \kappa(p)$, σ symmetric if $D\vec{U} = 0$,

with $\kappa(p)$ the plasticity.

Plan

- Introduction
- 2 Drucker–Prager model
 - Model formulation
 - Regularization and variational formulation
 - Discretization
- 3 1D/2D comparison
- Simulation of granular collapse
- Conclusions

Domain description

- The domain Ω_t is time dependent (free surface $\Gamma_{f,t}$).
- Fluid/solid interface between the two phases, characterized by $D\vec{U}$ zero or $D\vec{U}$ nonzero.
- The interface is not described explicitly.
- Fixed bottom Γ_b

- Boundary condition : $P.\vec{N} = \gamma \vec{N}$ on $\Gamma_{f,t}$ and $\vec{U} = 0$ on Γ_b .
- Kinematic condition : $N_t + \vec{N} \cdot \vec{U} = 0$ on $\Gamma_{f,t}$.

Conservation equations

• Incompressible Navier–Stokes equations :

$$\begin{split} \rho \left(\partial_t \vec{U} + (\vec{U}.\nabla_{\vec{X}}) \vec{U} \right) + \operatorname{div}_{\vec{X}} P &= \rho \vec{f} & \text{ in }]0, \, T[\times \Omega_t, \\ \operatorname{div}_{\vec{X}} \vec{U} &= 0 & \text{ in }]0, \, T[\times \Omega_t. \end{split}$$

Viscoplastic fluid of Bingham type :

$$\begin{split} \sigma &= 2\eta D\vec{U} + \kappa(p) \frac{D\vec{U}}{\|D\vec{U}\|} &\quad \text{if } D\vec{U} \neq 0, \\ \|\sigma\| &\leq \kappa(p), \; \sigma \; \text{symmetric} &\quad \text{if } D\vec{U} = 0, \end{split}$$
 where $D\vec{U} = \frac{\nabla \vec{U} + \nabla \vec{U}^t}{2}.$

Drucker–Prager relation :

$$\kappa(p) = \sqrt{2}\mu_s[p]_+,$$

 μ_s internal friction coefficient.

Geometry and boundary conditions (a)-(b)

Periodic flow over an inclined rigid bed (a)

- No-slip condition at the **bottom**: $\vec{U}(t, \vec{X}) = 0$ on Γ_b .
- ullet Periodicity condition on the lateral side $\Gamma_{l,t} \cup \Gamma_{r,t}$.

- No-stress condition at the free surface : $P \cdot \vec{N} = 0$ on $\Gamma_{f,f}$.
- Kinematic condition at the free surface : $N_t + \vec{N} \cdot \vec{U} = 0$ on $\Gamma_{f,t}$.
- Initial condition : $\vec{U}(0, \vec{X}) = \vec{U}_0(\vec{X})$.

Collapse over a rigid (b)/erodible (b_e) bed

- No-penetration condition : $\vec{U}(t, \vec{X}) \cdot \vec{N} = 0$ on $\Gamma_{b,t} \cup \Gamma_{\ell,t}$.
- Coulomb friction condition :

$$\sigma_{\mathcal{T}} = -\frac{\boldsymbol{\mu_{b/\ell}}}{|\vec{U}_{\mathcal{T}}|}[p - P_N]_{+} \quad \text{if } \vec{U}_{\mathcal{T}} \neq 0.$$

$$|\sigma_{\mathcal{T}}| \leq \frac{\boldsymbol{\mu_{b/\ell}}}{|\vec{U}_{\mathcal{T}}|}[p - P_N]_{+} \quad \text{if } \vec{U}_{\mathcal{T}} = 0.$$

on $\Gamma_{b,t} \cup \Gamma_{\ell,t}$.

Friction coefficient : $\mu_{b/\ell} = \mu_b$ on $\Gamma_{b,t}$, $\mu_{b/\ell} = \mu_\ell$ on $\Gamma_{\ell,t}$.

- (b) : No-stress condition : $P \cdot \vec{N} = 0$ on $\Gamma_{f,f}$.
- (b_e) : Local surface tension : $P \cdot \vec{N} = \frac{\gamma}{N} \vec{N}$ on $\Gamma_{f,t}$.
- Kinematic condition on $\Gamma_{f,t}$ and initial condition.

Plan

- Introduction
- 2 Drucker–Prager model
 - Model formulation
 - Regularization and variational formulation
 - Discretization
- 3 1D/2D comparison
- Simulation of granular collapse
- Conclusions

Regularization

Motivation:

Regularized constitutive equation:

$$\sigma_{\epsilon} = 2\eta D\vec{U} + \kappa(\mathbf{p}) \frac{D\vec{U}}{\sqrt{||D\vec{U}||^2 + \epsilon^2}}, \qquad \mathbf{0} < \epsilon \ll \mathbf{1},$$
 with $\kappa(\mathbf{p}) = \sqrt{2}\mu_s[\mathbf{p}]_+.$

Spaces

We consider

$$\mathbf{V} := \left\{ \vec{V} \in L^2(0, T; \mathbf{V}_t) \mid \frac{d\vec{V}}{dt} \in L^2(0, T; \mathbf{V}_t') \right\},$$

$$M := L^2(0, T; \mathbf{M}_t),$$

with

(a)
$$V_t := \left\{ \vec{V} \in H^1(\Omega_t)^2 \mid \vec{V} = \mathbf{0} \text{ on } \Gamma_b, \ \vec{V}(\vec{X}) = \vec{V}(\mathcal{T}(\vec{X})) \text{ for } \vec{X} \in \Gamma_{\ell,t} \right\},$$

(b)
$$V_t := \left\{ \vec{V} \in H^1(\Omega_t)^2 \mid \vec{V} \cdot \mathbf{N} = 0 \text{ on } \Gamma_{b,t} \cup \Gamma_{\ell,t} \right\},$$

and
$$M_t = L^2(\Omega_t)$$
.

Variational formulation

Find $(\vec{U},p) \in V \times M$ such that for almost all $t \in (0,T)$, and all $(\vec{V},q) \in V_t \times M_t$,

$$\begin{split} &\int_{\Omega_{\mathbf{t}}} \rho \left(\partial_{\mathbf{t}} \vec{U} + (\vec{U} \cdot \nabla) \vec{U} \right) \cdot \vec{V} + \int_{\Omega_{\mathbf{t}}} 2 \eta D \vec{U} : D \vec{V} + \int_{\Omega_{\mathbf{t}}} \kappa(\rho) \frac{D U}{\sqrt{||D\vec{U}||^2 + \epsilon^2}} : D \vec{V} \\ &- \int_{\Omega_{\mathbf{t}}} \rho \operatorname{div} \vec{V} + \int_{\Gamma_{\mathbf{b},\mathbf{t}} \cup \Gamma_{\ell,\mathbf{t}}} \frac{\vec{U}_{\mathcal{T}} \cdot \vec{V}}{\sqrt{|\vec{U}_{\mathcal{T}}|^2 + \epsilon_{\mathbf{f}}^2}} [p - P_{N}]_{+} = \int_{\Omega_{\mathbf{t}}} \rho \mathbf{f} \cdot \vec{V} + \int_{\Gamma_{\mathbf{f},\mathbf{t}}} \mathbf{\gamma} \vec{V} \cdot \vec{N}, \\ &\int_{\Omega} q \operatorname{div} \vec{U} = 0. \end{split}$$

(a) : -
$$\frac{\mu_{b/\ell}}{\gamma}$$
 = 0 (no friction), (b) : $\frac{\mu_{b/\ell}}{\gamma}$ > 0 (Coulomb friction).
- $\frac{\gamma}{\gamma}$ = 0 (no surface tension). (b_e) : $\frac{\gamma}{\gamma}$ > 0 (local surface tension).

Displacement of the domain

 $\hat{\Omega}$: reference domain

 Ω_t : current domain

Domain velocity:

$$\vec{\mathbf{W}}(t,x) = \frac{\partial \hat{\mathcal{A}}_t}{\partial t}(\hat{x}), \text{ with } \hat{x} = \hat{\mathcal{A}}_t^{-1}(x).$$

Time derivative treatement:

$$\int_{\Omega_t} \partial_t \vec{U} \cdot \vec{V} = \int_{\Omega_t} \partial_t ((\vec{U} \cdot \vec{V}) \circ \hat{\mathcal{A}}_t) \circ \hat{\mathcal{A}}_t^{-1} - \int_{\Omega_t} ((\vec{V} \cdot \nabla) \vec{U}) \cdot \vec{V}.$$

for
$$\vec{V}$$
 such as $\vec{V}(t,x) = \hat{\vec{V}}(\hat{\mathcal{A}}_t^{-1}(x))$.

J. F. Gerbeau, C. Le Bris, T. Lelievre, Mathematical methods for the magnetohydrodynamics of liquid metals, Oxford University Press, 2006.

Determination of \vec{W}

ullet We solve an elliptic problem inside Ω_t :

$$-\operatorname{div}(D\overrightarrow{W})=0$$
 in Ω_t .

- We extend suitable boundary values consistent with the kinematic BC:
 - Boundary conditions (a):

$$(\vec{W} - \vec{U}) \cdot \vec{N} = 0$$
 on $\Gamma_b \cup \Gamma_{f,t}$, $\vec{W} \cdot \vec{N} = 0$ on $\Gamma_{\ell,t} \cup \Gamma_{r,t}$, $(D\vec{W}\vec{N})_T = 0$ on Γ .

Boundary conditions (b) :

$$(\vec{W} - \vec{U}) \cdot \vec{N} = 0$$
 on Γ ,
 $(D \vec{W} \vec{N})_T = 0$ on Γ .

Plan

- Introduction
- 2 Drucker–Prager model
 - Model formulation
 - Regularization and variational formulation
 - Discretization
- 3 1D/2D comparison
- Simulation of granular collapse
- Conclusions

Discretization

• Mesh mapping :

$$\mathcal{A}_{n,n+1}: \Omega^n \to \Omega^{n+1}$$

$$\vec{X} \mapsto \vec{X} + \Delta t_n \vec{W}^n(\vec{X}).$$

• Time derivative discretization :

$$\int_{\Omega_{\boldsymbol{t}}} \partial_t \vec{U} \cdot \vec{V} = \int_{\Omega^{n+1}} \left(\frac{\vec{U}^{n+1} - \vec{U}^n \circ \mathcal{A}_{n,n+1}^{-1}}{\Delta t} - \vec{\boldsymbol{W}}^n \circ \mathcal{A}_{n,n+1}^{-1} \cdot \nabla \vec{U}^{n+1} \right) \cdot \vec{V} + O(\Delta t).$$

• $V^n = H^1_{\mathrm{bc}}(\Omega_{t^n})$ and $M^n = L^2(\Omega_{t^n})$.

• Given $(\vec{U}^{n+1,k}, p^{n+1,k})$, find $(\vec{U}^{n+1,k+1}, p^{n+1,k+1}) \in \mathbf{V}^{n+1} \times M^{n+1}$ such that for all $(\vec{V}, q) \in \mathbf{V}^{n+1} \times M^{n+1}$.

$$\begin{split} & \left(\vec{V}, q \right) \in \vec{V}^{n+1} \times M^{n+1}, \\ & \int_{\Omega^{n+1}} \rho \left(\frac{\vec{U}^{n+1,k+1} - \vec{U}^n \circ \mathcal{A}_{n,n+1}^{-1}}{\Delta t_n} + \left[(\vec{U}^{n+1,k} - \vec{W}^n) \circ \mathcal{A}_{n,n+1}^{-1}) \cdot \nabla \right] \vec{U}^{n+1,k+1} \right) \cdot \vec{V} \\ & + \int_{\Omega^{n+1}} \left(2\eta + \frac{\kappa^{n+1,k}}{\sqrt{\|D\vec{U}^{n+1,k}\|^2 + \epsilon^2}} \right) D\vec{U}^{n+1,k+1} : D\vec{V} \\ & - \int_{\Omega^{n+1}} \rho^{n+1,k+1} \operatorname{div} \vec{V} + \int_{\Gamma_b^{n+1} \cup \Gamma_\ell^{n+1}} \underbrace{\mu_{b/\ell}}_{\sqrt{|\vec{U}_T^{n+1,k}|^2 + \epsilon_f^2}} [\rho^{n+1,k} - \rho_N^{n+1,k}]_+ \\ & + \int_{\Gamma_b^{n+1} \cup \Gamma_\ell^{n+1}} \underbrace{\xi}_{\ell} (\vec{U}^{n+1,k+1} \cdot N) (\vec{V} \cdot N) = \int_{\Omega^{n+1}} \rho f^{n+1} \cdot \vec{V} + \int_{\Gamma_f^{n+1}} \underbrace{\gamma}_{\ell} \vec{V} \cdot N, \end{split}$$

$$\int_{\Omega^{n+1}} q \operatorname{div} \vec{U}^{n+1,k+1} = 0,$$

- Space discretization : $\mathbb{P}_2/\mathbb{P}_1$ finite element (Taylor-Hood).

Domain velocity \vec{W}_h^n

We look for $ec{W}_h^n \in \mathbb{P}_2(\Omega_h^n)^2$ such that for all $ec{V}_h \in \mathbb{P}_2(\Omega_h^n)^2$,

$$\int_{\Omega_h^n} D\vec{W}_h^n : D\vec{V}_h + \int_{\Gamma_h^n} \hat{\boldsymbol{\xi}} (\vec{W}_h^n - \vec{U}_h^n) \cdot \boldsymbol{N} (\vec{V}_h \cdot \boldsymbol{N}) = 0,$$

- $\hat{m{\xi}}\gg 1$ penalty parameter.
- (a) $\Gamma = \Gamma_b \cup \Gamma_{f,t}$,
- (b) $\Gamma = \Gamma$.

Update Algorithm

- We suppose that Ω_h^n , \vec{U}_h^n , p_h^n are known and we compute \vec{W}_h^n .
- We move the nodes of the mesh according to $A_{n,n+1}$. In case (b) we may need to limit the time step so that the free surface nodes do not cross the bottom :

Thus we obtain Ω_h^{n+1} .

• Finally, we compute $(\vec{U}_h^{n+1}, p_h^{n+1})$ on Ω_h^{n+1} .

Surface tension (b_e)

Difficulty: erodible bed geometry \Rightarrow folding up of the free surface.

Key : apply local surface tension with $\gamma = \gamma_0 \mathcal{C}$:

- $\gamma_0 = o(h)$ with h the mesh size,
- $C = d\theta/ds$ local curvature of the free surface.

Numerical approximation:

$$\mathcal{C}_{i} = rac{\delta heta_{i}}{\left(|\vec{R}_{i+1}| + |\vec{R}_{i}|\right)/2}$$

 $N_i \text{ free surface nodes.}$ $\vec{R}_i = N_{i-1}N_i$ $\delta\theta_i \text{ angular variation.}$

curvature at N_i .

 C_i is largest in i_c

• we apply surface tension around i_c of extension $\delta > 0$

$$\gamma_{0,i} = \overline{\gamma}_0 \left(\max \left\{ 0, 1 - \left(\frac{i - \mathbf{i_c}}{\delta} \right)^2 \right\} \right)^2.$$

Validity test

Figure: Comparison between regularization method with surface tension (full lines) and regularization method without surface tension (dotted lines).

Plan

- Introduction
- 2 Drucker-Prager model
- 3 1D/2D comparison
- 4 Simulation of granular collapse
- Conclusions

Model with source term (S)

Assumptions:

- Change of coordinates $\vec{X} \mapsto (X, Z)$,
- shallow water assumptions,
- X parameter.

Simplified model [1]

$$\partial_t U(t,Z) + \mathbf{S}(t,\mathbf{Z}) - \nu \partial_{ZZ}^2 U(t,Z) = 0 \quad \forall Z \in]b(t), h[,$$

$$U = 0 \quad \text{at } Z = b(t),$$

$$\nu \partial_Z U = 0 \quad \text{at } Z = b(t),$$

$$\nu \partial_Z U = 0 \quad \text{at } Z = h.$$

[1] Modélisation numérique des écoulements gravitaires viscoplastiques avec transition fluide/solide, PhD thesis. Université Paris-Est, Champs-sur-Marne, 2013.

Case (a): uniform flow with plug

- Longitudinal velocity U(t, Z) solving (S),
- $S(t, Z) = g \cos \theta (\mu_s \tan \theta)$ constant source term,
- θ angle of inclined domain Ω .

$$\mu_s > \tan \theta \Longrightarrow \bullet \quad \vec{U} = (U,0) \text{ solution of (NSDP) with BC (a),}$$
 $\bullet \quad \text{the pressure is hydrostatic : } p = g \cos \theta (h - Z).$

Velocity error:

- U(t, Z) extended on the 2D mesh,
- ullet error between U and the longitudinal component of $ec{U}$.

Numerical results

- $\epsilon = 10^{-2}$: regularization error dominates.
- ullet $\epsilon=10^{-6}$: regularization error dominated by discretization error.
- Numerical convergence of order 1 in space and in time.

Figure: Velocity error with respect to ϵ .

ϵ	10^{-2}	10^{-4}	10^{-6}	10^{-8}
total iter	824	2958	5086	5272

 $\epsilon=10^{-8}\Longrightarrow$ saturation of iterations cost.

Plan

- Introduction
- 2 Drucker-Prager mode
- 3 1D/2D comparison
- Simulation of granular collapse
- Conclusions

Case (b): collapse over horizontal plane

Comparison of numerical results with:

- Numerical results from augmented Lagrangian formulation [1].
- Experimental results from laboratory experiments [2].

Profiles

- Thickness profile (free surface evolution).
- Components of velocity profiles U_X and U_Z .
- Position of the static/flowing interface.

- [1] D. Bresch, E. D. Fernandez-Nieto, I. Ionescu, P. Vigneaux, Augmented Lagrangian Method and Compressible Visco-Plastic Flows: Applications to Shallow Dense Avalanches, Advances in Mathematical Fluid Mechanics, 2010.
- [2] M. Farin, A. Mangeney, O. Roche, Fundamental changes of granular flow dynamics, deposition, and erosion processes at high slope angles: Insights from laboratory experiments, J. Geophys. Res. Earth Surf., 2014.

Configuration

Physic parameters :

-
$$\mu_{s} = \tan 25.5^{\circ}$$
,

$$-\mu_b = \tan 25.5^{\circ},$$

$$-\mu_{I} = \tan 10.2^{\circ}$$

-
$$\eta = 1$$
Pa.s,

$$- \rho = 1550 \text{kg.m}^{-3}$$
.

Geometric parameters:

$$-\alpha_0 = 70^{\circ}$$
.

$$-h_0 = 25 \text{cm}$$

$$- h_{e} = 5 \text{mm},$$

$$- l_0 = 29.7 \,\mathrm{cm}(1) / 80 \,\mathrm{cm}(1).$$

(I) rigid bed

(II) erodible bed

Meshes

Initial mesh:

Final mesh:

Figure: Initial and final ($t \ge 0.7s$) meshes for the regularization method with $\epsilon = 10^{-6} s^{-1}$.

Plan

- Introduction
- 2 Drucker-Prager model
- 3 1D/2D comparison
- Simulation of granular collapse
 - Comparison with augmented Lagrangian method
 - Comparison with laboratory experiments
 - ullet Sensitivity with respect to ϵ
- Conclusions

Freesurface

Parameters : -
$$\epsilon = \epsilon_f = 10^{-6} \, \mathrm{s}^{-1}$$
.
- $\Delta X \simeq 10^{-2} \, \mathrm{m}$, $\Delta t = 10^{-3} \, \mathrm{s}$, and $\varepsilon_{\mathrm{stop}} = 10^{-3}$.

- The regularization method leads to: less decreasing thickness on the left side,
 - slightly faster front propagation (on the right),
 - 7 times faster running

Velocity components U_X and U_Z

Vertical sections : $X_g - 10$ cm and X_g ($X_g = 29.7$ cm front position).

interface (trapeze)

t=0.3s (REG)

25

Static/flowing interface

interface (trapeze)

t=0.18s (REG)

25

Interface approximation : - vertical sections $X_i \in [0, X_t^{\max}]$, with X_t^{\max} the Ω_t length, $-\underline{\lim}\left\{y \in [0, h(t, X_i)] \ \middle| \ |\vec{U}(X_i, y)| > \varepsilon_{\vec{U}}\right\}$, $\varepsilon_{\vec{U}} = 10^{-3} \mathrm{m.s}^{-1}$.

Plan

- Introduction
- 2 Drucker-Prager model
- 3 1D/2D comparisor
- Simulation of granular collapse
 - Comparison with augmented Lagrangian method
 - Comparison with laboratory experiments
 - ullet Sensitivity with respect to ϵ
- Conclusions

Freesurface

 $\underline{ \ \ \, \text{The regularization method leads to}:} \bullet \text{faster dynamics than in experiments,}$

• final deposit very well approximated.

Velocity components U_X and U_Z

The regularization method leads to:

• velocity profiles qualitatively reproduced,

• maximum horizontal velocity close to free surface.

Static/flowing interface

The regularization method leads to: • overall good approximation of interface position, • position underestimated on top of the left side.

Erodible bed

Framework: erosion process modeling.

Goal : simulation of a granular collapse over an erodible bed made of the same material represented by a thin layer of thickness $h_e = 5$ mm under the trapezoidal column.

Mean: local surface tension effects.

Freesurface

The regularization method with local surface tension leads to :

- comparable profiles all along the simulation,
- final deposit well approximated.

Plan

- Introduction
- 2 Drucker-Prager model
- 3 1D/2D comparison
- Simulation of granular collapse
 - Comparison with augmented Lagrangian method
 - Comparison with laboratory experiments
 - ullet Sensitivity with respect to ϵ
- Conclusions

interface (trapeze)

Sensitivity with respect to ϵ

interface (trapeze)

Figure: Comparison of the static/flowing interface between the regularization method with $\epsilon = 10^{-1} \text{s}^{-1}$ and with $\epsilon = 10^{-6} \text{s}^{-1}$.

Plan

- Introduction
- 2 Drucker-Prager mode
- 3 1D/2D comparison
- Simulation of granular collapse
- 6 Conclusions

Conclusions

- Two-dimensional flows of viscoplastic materials with pressure-dependent yield stress.
- Regularization method with evolution of the mesh.
- Validation: simple shear flow configuration and comparison with augmented Lagrangian method.
- Regularization runs faster than augmented Lagrangian.
- Geophysically relevant configurations : granular collapse.
- Erosion process simulation.

Perspectives

- Adaptive mesh.
- Inclined plane.
- Rectangle geometry.
- Viscosity pressure-rate dependent.
- Friction pressure-rate dependent.

Merci!!